2014年5月23日 星期五

Basics of Fire Science

(Draft)

I. Basics of Fire Science

A. Definition:
- Fire: It is a rapid oxidation process accompanied by evolution of heat, light, flames and emission of sound.

B. Ignition:
- Pilot ignition: Fire ignited by an external heating source;
- Spontaneous ignition: Fire is ignited by itself under elevated temperature.

Materials
Pilot Ignition Temperature (°C)
Spontaneous Ignition Temperature (°C)
Cotton
230 – 266
254
Paper
230
230
White pine
228 – 264
260
Polyethylene
341
349
PVC
391
454
Perspex
280 - 300
450 - 462
Polystryrene foam
346
491
Polyurethane
310
416

C. Combustion:
- a series of very rapid chemical reactions. (i.e. fuel, heat, oxygen).
i. Smouldering Combustion - Burning process without flame due to limited supply of oxygen.
ii. Flaming Combustion - Visible manifestation of combustion between gaseous fuel and oxygen.
iii. Heat of Combustion (ΔHc):
- Heat of combustion is the energy released as heat when a material undergoes complete combustion with oxygen under standard conditions.
- Different fuels have different heat of combustion. Usually, fuels with carbon-rich molecules have higher heat of combustion but also require higher ignition energy.
iiii. Combustion Reaction:
- Propane (C3H8)
- C3H8 + O2 > 3CO2 + 4H2O
-The reaction produces 2044kJ/mole of C3H8 Or 46.45kJ/g of C3H8.
- The energy produced by the combustion reaction will be presented in form of light and heat. (e.g. a flame)

D. Flammability & Flame Structure

E. Flames 
i. Premixed flame - Fuel gas and oxygen are mixed before combustion.
ii. Diffusion flame - Fuel gas and oxygen are separated before combustion (e.g. bunsen burner)

F. Buoyant plume
- The heat produced by the combustion reaction will heat up the surrounding air.
- When the air temperature increase the density is reduced.
- The density different between the hot gas and the surrounding ambient air increases.
- The buoyancy force of the hot air increases and pushes the hot air to higher level. 
- The hot gases created from the fire forms a hot gas column extending to the ceiling of the compartment.
- The upward movement of the hot gas column induces the entrainment of the surrounding ambient air by turbulent mixing and molecular diffusion.
- Due to the air entrainment, the temperature and velocity of the plume decreases along the upward direction. Therefore, a plume shape can be approximated by an inverted cone.

G. Ceiling Jet
- When the hot gas reaches the ceiling, it can not penetrate through the slab. It spreads not penetrate through the slab. It spreads radially under the slab soffit.
-The air entrainment along the horizontal spread of the hot gas is not efficient.
- The speed of the ceiling jet is fast due to the thin layer of the hot smoke under the ceiling.
- The ceiling jet in contact with sprinkers and detectors.

Modelling of Ceiling Jet Temperature:
- Alpert's equation (for temperature)

H. Hot and cold layers
- When the ceiling jet reaches the wall boundaries, it reflects back and accumulates at the upper part of the compartment.
- A thermal interface exists in the compartment to demarcate the upper hot gas layer and the lower air layer. The interface is quite stable.
- It is defined as the level which the largest change in temperature.
- When the thermal interface reaches the door soffit, the hot gas emerges out of the compartment.

I. Neutral Plane
- At the upper part of the door opening, the hot gas is emerging out of the  compartment.
- At the lower part of the door opening, the ambient air entering into the compartment.
- There exist a level at the door opening in which the air velocity is zero. It is defined as Neutral Plane.

J. Modelling Hot Gas Temperature
i. McCaffrey et al. equation
ΔTg = 480 [Q / (g1/2 cpρT Ao Ho 1/2)] 2/3 [ hk AT / (g1/2 cpρAo Ho 1/2)] -1/3

- hk is the heat transfer coefficient which is time dependent
- If t tp, hk = ( kρc /t)1/2, otherwise hk = k /δ
- tp = (ρc /k) (δ/2) 2 is the penetration time

ii. Foote et al.
ΔT/T = 0.63 [ Q/(mg cp T]0.72   [hAT / (mg c) ]-0.36
- mg is the mass ventilation rate in (kg/s)

K. Flashover
- The fire plume and the hot gas layer emit radiation to all unburnt combustible materials inside the compartment
- When the radiation is sufficiently high, it will ignite all combustible materials
- All fuels inside the compartment are involved in the fire
- The heat release rate / temperature are rapidly increased

L. Determination of Flashover
- Hot gas temperature at 10mm below ceiling soffit  600°C
- Radiation at the floor of the compartment  20kW/m²
- Minimum heat release rate can be estimated by use of the McCaffrey equation by setting the
ΔTg  = 600- ambient temperature in °C.

- Method of Babrauskas
Q = 750 Ao Ho1/2

- Method of McCaffrey et al.
Q = 610( hATAo Ho1/2 )1/2

- Method of Thomas
Q = 7.8 AT + 378 Ao Ho1/2

M. Growth stages of enclosure fire
- Ignition
-Grown stage (pre-flashover stage)
- Flashover
- Fully developement stage (post-flashover stage)
-Decay stage

N. Typical Fire Growth Curve

O. Design Fire Growth Rate
- t² fire is commonly adopted in fire engineering.
- It owns a parabolic increasing profile
   * Extra fast growth (75s to reach 1MW)
   * Fast growth (150s to 1MW)
   * Medium growth  (300s to 1MW)
   * Slow growth  (600s to 1MW)
- The fire size increases parabolically until it reaches the maximum heat rekease rate.

P. Smoke / Hot Gas Production Rate
Smoke Production Rate is approximated by the air entrainment rate

m smoke = m fuel + m air
m fuel << m air => m smoke  m air

R. Smoke Production Rate
If (z –z fire) / L flame 1 (smoke height > flame length
mg = 0.071 Qc 1/3 (z – z fire – L fame + 0.166Qc 2/5) 5/3 x [1 +0.026 Qc2/3 (z – z fire – L flame + 0.166 Qc 2/5)-5/3]

If 0 < (z –z fire) / L flame < 1
Mg = 0.0054Qc (z – z fire)

Where
Qc ≈ 0.65 Qtotal
L flame = -1.02 D + 0.235Qc 2/5

D id the diameter of fire bed

S. Mechanical Smoke Extraction
- Smoke is removed by extraction fan
- The mass extraction rate should be higher than the mass of smoke generation rate
- Volumetric flow rate = mass flow rate / density
- By ideal gas law with constant pressure, we have  ρT = constant.
ρT =ρ273T273 = 1.2922 x 273 =352.77


T. Static Smoke Vent
- Smoke is drive by its buoyancy to the atmosphere naturally (natural vent)
Mg = Cd,v Av ρo [2 g zlay (T – To)]1/2 / [ T/To + (Cd,v Av / Cd,i Ai)² (To / T] 1/2


where Cd,v and Cd,I are the discharge coefficients of vent outlet and inlet respectively.

U. Zone Modelling
- Zone model  approximate the smoke layer can be defined as one zone; the clear air underneath is another
- Heat and mass are transferred from lower zone to upper zone is treated as the third zone
- Heat release rate should be specified as a function of time (e.g. t² fire)
- Generally responds quick and useful in sample geometry

V. Field models
- Computational domain is divided into many small volumes
- A large set of partial differential equations to describe the chemistry of combustion, heat soot production of one volume and its neighboring volumes
- The problem is solved iteratively by numerical approach until the solution converge

W. Meshing (finite element approach)
- Some CFD models provide equation to determine the grid size. Others may require grid sensitivity study.

X. Fire Size and Growth
- Some of the CFD model can solve the fire chemistry and determine the fire size by its own
- However, pre-determining a maximum fire size can cope with the worst scenario but it should be determined reasonably with supports from literature
- T-square fire is usually adopted

Y. Smoke Generation
- With only heat release rate specified, the fire source is only a heating element. The soot yield rate should also be pre-determined since it will affect the visibility

Z. Boundary Condition Setting
- Boundary materials
- Extended regions should be provided at openings
- Patching of fire location
- The fire bed area
e.g. When door is opening, the pressure will reduce. Fire/smoke will be extract suddenly.

AA. Convergence
- Some of the CFD packages can terminate the simulation of the preset convergence criterion
- Some of the CFD packages (e.g. LES model) require user to determine the simulation time. To confirm the convergence, the time averages of two consecutive time frames should be compared

II. Compartment Fire Behaviour & Fire Fighting 

A. Compartment Fire Behavior Training

B. Combustion Theory
- Heat: conduction, convection & radiation
- Oxygen: does not support combustion at >15%
- Fuel: Liquid, gas & solid (Pyrolysis); Only 25% of gaseous fuel will be burnt and the rest will be accumulated in the atmosphere

a. Pyrolysis
- Decomposition of a substance by heat
- Does not involve catalyst and oxygen
- Pyrolysis can start to be product at about 80°C
- At 150°C - 200°C pyrolysis will occur in wood

b. Fire Gases (Smoke)
- Non flammable gases - mainly CO2 and water vapour
- Flammable gases - due to pyrolysis and incomplete combustion, includes Carbon Monoxide
- Air - entrained in by rising temperature
- Soot - small solid particles of carbon

c.  Limits of Flammibility
Gas
Limits of Flammability (%)
Auto Ignition Temperature (°C)
Acrolein
3 – 31
278
Ammonia
16 - 25
651
1,3 Butadiene
2 – 11.5
429
Carbon Monoxide
12.5 – 74
609
Formaldehyde
7 - 73
430
Hydrogen cyanide
6 – 41
538
Hydrogen sulphide
4.3 - 46
260




Reference:
1. Resources CFB-US 
3. Publication and Code of Practices-  HKFSD
2. Fire safety engineering of structures (Blog)


2014年5月13日 星期二

古井翻開 宋代九龍城




沙中綫土瓜灣站的考古工作報告/簡介 - 古物古蹟辦事處   


2014.5.23

(轉載 文件證沙中線另有兩古井) 【明報專訊】



2014.5.11

(轉載)街知巷聞﹕古井翻開 宋代九龍城





【明報專訊】沙中線土瓜灣站工地掘出六口宋代古井,遺址範圍之大,轟動香港考古和歷史界;有人甚至說,這或會改寫香港歷史。

所謂香港歷史,我們總脫離不了「一八四一年開埠」這個故事開端,而在成為殖民地以前,香港,傳說是個漁村。

可是,這顯然是被極度簡化的香港古代史,歷史學家其實早就發現,遠在英軍登陸之前,香港是來往東南亞的必經海灣,推斷是個重要港口。

雖然不是空白一片,但香港古代歷史裏的確有很多留白的地方。

同樣坐落在九龍城一帶,同樣關於宋代,我們其實也有宋王臺、侯王廟,南宋小皇帝落難九龍的故事也家傳戶曉,若與古井連繫起來,究竟在訴說一個怎樣的香港宋代歷史?
香港史學會會長鄧家宙博士說,若古井真是北宋古蹟,那麼後來南宋皇帝落難時,他所駕臨的九龍,肯定「唔止係個漁村咁簡單」。這裏,該是一個有規模的商埠,附近有衙門,村落的人有學識、有財富。

「海上絲路必經香港」

「在魏晉南北朝後,已經有船要經香港去東南亞。」古代,除了北方有一條絲綢之路通往西域,南方其實也有一條「海上絲綢之路」,文獻上有很多當時的航海資料,提及很多途經的地點,包括屯門,只是當時並未有「海上絲綢之路」的說法,也沒有什麼文物可以證明。這條路線,東至日本等地,經上海、福建等,再到廣州,然後向西南方向駛至越南、泰國等地。「屯門,是作為進入廣州前的第一個『哨站』,所以外來船舶都要在屯門檢查核實。你看地圖就知道,屯門的地形,凹了入去,打風落雨可避,所以用來屯兵,是個軍鎮」。

廣州,自古以來就是一個商貿繁盛的地方,商品來往「南洋」,都會途經此地。在唐宋的官史當中,可以看到廣州是「巿舶司」的重地。巿舶司,是個官方貿易機構,「類似海關,負責海上貿易的事。宋代,政府設有九個巿舶司口岸,把它們連成一線的話,就知道海上絲路必經香港」。

鄧博士說,香港其實並不止有作為廣州關卡的一個角色,「西貢大廟的宋朝石刻,已證明香港曾經有官富場、有鹽官」。官富場,即是官方生產鹽的地方,「第一個有紀錄的鹽場,在大嶼山」。香港歷史學家蕭國健教授在《香港古代史》中也提及,北宋末年,官富鹽場就在現在的九龍灣西北一帶,並有防止居民販賣私鹽的摧鋒軍守衛。「鹽官辦公的地方,推斷在九龍灣一帶。」鄧家宙說,所謂的九龍灣,並不止是現在淘大花園那兒,「是九龍山下的整個海灣,包括現在掘出古井對出的海灣」。

皇帝來得有理

有衙門、有古井,「後來小皇帝宋帝昺逃難,選擇在這裏的聖山落戶,看來就很合理了」。鄧博士說,這次找到的古井,可以證明這裏並不是一般的漁村。六口井,說明這裏住的人數很多,「新界一條村幾百人,只用一個井」,而最新發現的四方井,井台建築講究,工地也發現有一排房屋地基,「漁民不會有這種經濟能力,造出這種水平的井」。他分析,漁村的人,少上陸地住,而即使為方便而在陸上建屋,建的都是較簡單較矮的屋,「井不需要這種大石建構,地基不需要打得咁靚咁厚」。

擁有至少六個井的村落,「人數多,有財富,有學識」;衙門也不是文官辦案,而是與經濟商業有關的官府,村落這麼大,可以想像有很頻繁的商業活動。所以鄧博士推斷,土瓜灣站工地一帶,原本就是個規模不小的商埠。

方井 有井台 好講究

這次掘出四個圓井、兩個方井的地方,就在宋王臺與啟德發展區之間的土瓜灣站工地,考古報告稱估計為北宋年代的古井,可是暫時就只有兩個方井會保留,其餘四個圓井已經拆毁。方井,為什麼保留價值就高一點呢?港大房地產及建築系潘新華教授說,方井所用到的石頭,大塊而工整,而一般圓井的構造,則可用較小而形狀不規則的石塊砌成,所以方井所要的技術比較講究。而這兩口方井之中,其中一個更有井台,而且井台的石塊是以放射式鋪成,在實用性以外,還顧及了美觀。

在《清明上河圖》之中,也可以看到有方井的出現,但潘新華說,清明上河圖裏的方井,若仔細看的話,井台雖屬方形,但它其實是個圓井。而這種方井台的圓井,在南丫島也有。「那條村,據說已有二百年歷史,我曾經問過村裏七十多歲的婆婆,她說在她小時候已有這個井。」

至於井是否有既定的建造方法?是否可以從結構看到古井屬於什麼年代?潘新華提到,宋代有一本「給建造業的天書」,叫《營造法式》,裏面有詳細列明一個井應該有幾寬、用什麼井石等,不過他並未有機會逐一查證土瓜灣的六個古井是否有跟足標準。要是都一一符合標準的話,大概可以判斷,這些井是否由當時的官衙建造。

宋王臺 宋帝落難記

宋王臺,算是我們最認識的一個關於宋代的遺蹟。據史載,南宋末年,元軍南侵,在景炎二年(一二七七年)四月,年僅十歲的帝昺南逃,來到香港,在官富場一帶建立海上王朝。官富場,就在現在的九龍城一帶,清代嘉慶年的《新安縣志》中的地圖,九龍的位置就只有「官富山」一個名字。

鄧家宙說,相傳宋帝南來,在後來啟德機場跑道附近的小山崗居住。這山據說並不高,只有海拔一一四英呎。後來宋帝昺經長洲移師崖山,最後死於該處。後來人們為紀念曾有皇帝居於此,就在山上的大石刻上「宋王臺」。這石雖與宋史有關,但其實在元朝才有此石,「宋朝滅亡,元朝開始,所以即使立石的時間是元朝,也是合理的」。

至清末,宋王臺一帶有不少居民採石,日漸殘破。雖然已是殖民地,但人們對於這段歷史依然非常重視,後來一批文人學者倡議保護宋王臺,最後在一八九九年通過了專為宋王臺而設的《保存宋王臺勝蹟條例》。只是到了日戰時期,因日軍要擴建啟德機場而把這山炸掉大部分,只遺下這刻有字樣的巨石。一九五九年,為這石而闢的宋王臺公園,終於建成。

這次宋王臺附近有古井出土,數目更有六個,可見當時這裏在南宋皇帝來到之前,已經是個規模不小的村落。「若古井的確屬於北宋,這樣南宋皇帝選擇在這處落腳也是合理的。」

福佬村道 福佬原是皇帝保鑣

當時的宋帝昺,落難逃至九龍後,住在山上,「山上是他的行宮,護送他來的守衛官兵則住在山下。所以現在九龍城裏有條福佬村道」。鄧家宙說,據說這班福佬、即是福建人,都是護送皇帝南來的人。「皇帝沿海逃難,去到福建時,有一群福建人護駕他繼續南下,送至這裏。」這些福建人做官兵,守在皇帝的山下,形成一條村落,所以叫福佬村。

九龍城有條福佬村道,長洲也有條「鶴佬巷」,而故事其實是相連的。「他們後來再護送皇帝,經長洲到崖山,直至南宋滅亡。有一批人到達長洲後,沒有跟隨到崖山,就在長洲躲起來,然後落地生根。」不過,他說這段故事都是傳說,沒辦法證明。

侯王廟 追念忠臣

位於九龍寨城公園後方的侯王廟,看上去與我們一般看見的廟宇差不多,鄧家宙也說,從外觀看這廟宇也不屬於宋代建築。根據古蹟辦的描述,它建於屬於清代的一七三○年代,廟裏的記載指是為紀念南宋忠臣楊亮節。楊亮節據說是宋帝昺的舅父,當年同樣為護送宋帝逃難來到九龍,生前獲封為侯,死後再追封為王。

雖然建於清朝,但鄧家宙說,這也有可能是從宋代起就於此處供奉侯王。「往時要供奉,不一定要有大型廟宇建築,放個神主牌、裝支香,起間屋仔,就當係。然後過些時日,附近居民覺得它靈驗,才開始集資建廟。所以建廟時間滯後了,也可以是合理的。」

衙前圍村 徽宗有關

即將清拆的衙前圍村,名字中的「衙前」,就是在衙門前的意思,所以鄧家宙說,從前這裏附近有衙門,是可以肯定的。雖然衙前圍村在一三五二年、即元朝立村,但相傳它村中人都是宋帝昺的隨從,當年跟隨皇帝南逃至九龍。不過,張瑞威教授曾經寫過一篇文章,認為這些說法只是現代的其中兩代後人的版本,族譜等文獻均對這段歷史沒有記載。他們的祖先,與宋帝有關的事迹,則可能在宋帝昺前二百年的宋徽宗年代。衙前圍村的三個氏族中,吳氏淵源本在中原,後來南遷至廣州,據說是為了招兵營救宋徽宗。後來出師未捷身先死,後代就繼續南移,後來定居九龍。

文 陳嘉文
圖 陳淑安、資料圖片

編輯 方曉盈





2014.4.10
【明報專訊】今次在沙中線地盤附近發掘出200多個考古遺蹟及數千件古物,專家報告透露,出土物數量很大,需時整理,而發掘結果為該區過去歷史提供了實物資料,如發現大量陶瓷器,反映發掘地點及附近區域早在宋代(960-1279年)時已有人居住,而發現的宋元時期房屋遺蹟,亦為此提供佐證。古諮會成員兼熟悉香港歷史的高添強指出,出土石井和其他文物反映700至800年前本港生活面貌,香港市區不單是殖民地後開拓的小漁港,而是早在宋元時期已有頻繁的貿易活動。

九龍城一帶歷史源遠流長,高添強說,除較為人熟悉的南宋時期宋帝二皇逃難到九龍城,過往如在大廟灣的南宋石刻碑文記載,早在宋代,九龍城已是廣東地區十三鹽場之一,也是發達的交通要地,不少人會在香港安家落戶從商。


殖民地前不止小漁港

他說,今次發現反映有大量居民聚居,對本港歷史研究有重大作用。他又指過往英國一直指本港開埠前是小漁港,又只集中說新界的大家族歷史,忽視本港市區數百年前已是貿易港的發展,反令不少市民誤以為宋王臺等建築只是傳說。


報告今次又根據發掘地點的原地貌,推測在宋元時期,該處部分低窪區域是居民傾倒垃圾的地方,周邊亦有宋元時期的墓葬區和居住區。墓葬都呈不規則形狀、墓坑較淺、隨葬品少,相信是較為倉卒地埋葬;而在若干年後,當墓葬區廢棄後,人們開始在此建房子居住。


直至晚清,人們開始在該處農耕,如上世紀初啟德一帶屬住宅區,後來政府決定修建啟德渠,匯集該區幾條河流,工程便將附近幾條街的住宅破壞;今次亦重新發掘到當年住宅的部分根基,而後來因為1920年代起啟德機場的發展,農耕和住宅活動亦逐漸消失。

相關資料:
1. 陳雲 本土論壇 14.04.25  從沙中線發現宋代古井說起 - Youtube;
2. Kowloon Walled City: Life in the City of Darkness
3. 宋朝 - 維基百科
4. 英國國家檔案館 -  殖民地圖片 (Flickr) (Apple Daily)

23.5.2014 文件證沙中線另有兩古井 明報專訊